Dynamic interactions of excitatory and inhibitory inputs in hypoglossal motoneurones: respiratory phasing and modulation by PKA.

نویسندگان

  • Shane A Saywell
  • Jack L Feldman
چکیده

The balance of excitation and inhibition converging upon a neurone is a principal determinant of neuronal output. We investigated the role of inhibition in shaping and gating inspiratory drive to hypoglossal (XII) motoneuronal activity. In neonatal rat medullary slices that generate a spontaneous respiratory rhythm, patch-clamp recordings were made from XII motoneurones, which were divided into three populations according to their inhibitory inputs: non-inhibited, inspiratory-inhibited and late-inspiratory-inhibited. In late-inspiratory-inhibited motoneurones, blockade of GABA(A) receptors with bicuculline abolished inspiratory-phased inhibition and increased the duration of inspiratory drive currents. In inspiratory-inhibited motoneurones, bicuculline abolished phasic inhibition, which frequently revealed excitatory inspiratory drive currents. In non-inhibited motoneurones, neither bicuculline nor strychnine markedly changed inspiratory drive currents. Inhibitory currents in XII motoneurones were potentiated by protein kinase A (PKA) activity. Intracellular dialysis of the catalytic subunit of PKA or bath application of the PKA activator Sp-cAMP significantly increased the amplitude of expiratory-phased IPSCs without any change in IPSP frequency. Inspiratory-phased inhibition in inspiratory-inhibited motoneurones was potentiated by Sp-cAMP. We conclude that inspiratory-phased inhibition is prevalent in neonatal XII motoneurones and plays an important role in shaping motoneuronal output. These inhibitory inputs are modulated by PKA, which also modulates excitatory inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiratory and telencephalic modulation of vocal motor neurons in the zebra finch.

Birdsong, like speech, involves coordinated vocal and respiratory activity achieved under telencephalic control. The avian vocal organ, or syrinx, is innervated by motor neurons (MNs) in the tracheosyringeal part of the hypoglossal nucleus (XIIts) that receive their synaptic input from medullary respiratory areas and telencephalic song control areas. Despite the importance of XIIts MNs to learn...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurones.

1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumpin...

متن کامل

Dynamic modulation of inspiratory drive currents by protein kinase A and protein phosphatases in functionally active motoneurons.

Plasticity underlying adaptive, long-term changes in breathing behavior is hypothesized to be attributable to the modulation of respiratory motoneurons by intracellular second-messenger cascades. In quiescent preparations, protein kinases, including cAMP-dependent protein kinase A (PKA), potentiate glutamatergic inputs. However, the dynamic role of protein kinases or phosphatases in functionall...

متن کامل

The Multisegmental Motor Supply to Transverse Muscles Differs in a Cricket and a Bushcricket

Most abdominal sternites of the cricket Gryllus bimaculatus and the bushcricket Decticus albifrons are bridged by a transverse muscle (TM) which supports expiratory movements. In the cricket, ventilatory contractions are controlled both within each segment, by a bilateral pair of excitatory motoneurones in the abdominal ganglion supplying the left and right halves of the TM independently, and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 554 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2004